人工智能的发展历史

第一次浪潮(非智能对话机器人)

20世纪50年代到60年代

1950年10月,图灵提出了人工智能(AI)的概念,同时提出了图灵测试来测试 AI。

图灵测试提出没有几年,人们就看到了计算机通过图灵测试的“曙光”。

1966年,心理治疗机器人 ELIZA 诞生

那个年代的人对他评价很高,有些病人甚至喜欢跟机器人聊天。但是他的实现逻辑非常简单,就是一个有限的对话库,当病人说出某个关键词时,机器人就回复特定的话。

第一次浪潮并没有使用什么全新的技术,而是用一些技巧让计算机看上去像是真人,计算机本身并没有智能。

 

第二次浪潮(语音识别)

20世纪80年代到90年代

在第二次浪潮中,语音识别是最具代表性的几项突破之一。核心突破原因就是放弃了符号学派的思路,改为了统计思路解决实际问题。

在《人工智能》一书中,李开复详细介绍了这个过程,他也是参与其中的重要人物之一。

第二次浪潮最大的突破是改变了思路,摒弃了符号学派的思路,转而使用了统计学思路解决问题。

 

第三次浪潮(深度学习+大数据)

21世纪初

2006年是深度学习发展史的分水岭。杰弗里辛顿在这一年发表了《一种深度置信网络的快速学习算法》,其他重要的深度学习学术文章也在这一年被发布,在基本理论层面取得了若干重大突破。

之所以第三次浪潮会来主要是2个条件已经成熟:

2000年后互联网行业飞速发展形成了海量数据。同时数据存储的成本也快速下降。使得海量数据的存储和分析成为了可能。

GPU 的不断成熟提供了必要的算力支持,提高了算法的可用性,降低了算力的成本。

深度学习是当下的主流技术
在各种条件成熟后,深度学习发挥出了强大的能力。在语音识别、图像识别、NLP等领域不断刷新纪录。让 AI 产品真正达到了可用(例如语音识别的错误率只有6%,人脸识别的准确率超过人类,BERT在11项表现中超过人类…)的阶段。


已发布

分类

来自

标签:

评论

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注